中西 勇人 ゼミナール

研究課題 経済ゼミナールⅠ 「計量経済学(統計学入門)」
経済ゼミナールⅡ 「計量経済学(経済学の理解に基づくデータ分析)」
経済ゼミナールⅢ 「計量経済学(経済学と統計学を用いての卒業論文作成)」

研究内容

計量経済学

2年次の皆さんには計量経済学という言葉は馴染みが無いでしょうから、まず計量経済学の説明をしようと思います。学生の皆さんが学んでいる経済学は、知識の積み重ねによって築かれてきました。これは理系(と日本で呼ばれる)分野の科学と同様です。たとえば中学校で落下運動の観測を通して、落下中は球の速度が1秒あたり秒速9.8m増加すると学び、この知識をもとに球を離した2秒後には球の速度が秒速19.6mであることを知ることができたでしょう。そして一度

速度=9.8×時間 より一般的には 速度=加速度×時間

のような数式による表現を得れば、数学の知識を使って

位置=1/2×加速度×(時間^2)

という関係を推測することができます。(x^2はxの2乗という意味です。)結果、物体の運動を予測できるようになるわけです。

統計学は、この過程の中で、実験で得たデータを用いて加速度の値(たとえば9.8という値)を得たいとき、あるいは、位置=1/2×加速度×(時間^2)という論理的思考の産物が自然と適合しているかチェックしたいときに役立つツールです。

これは経済学であれば、効用関数のパラメタの値を調べたり、

「大学で4年間学ぶことが労働者の賃金を上昇させる」

のような、理論モデルから予測される仮説を現実のデータを用いて検証するツールに当たります。しかし、経済学の分析対象である社会は複雑ですから、複雑な事情を考慮して分析するための追加的な方法が必要になります。この「追加的な方法」まとめたものが計量経済学だと思っていただいて良いと思います。たとえば、大学に入学・卒業する人はそうでない人と比べて能力が高かったり、学習意欲が高かったりするので、単純に大学卒業者と非卒業者の年収を比べても、大学で4年間学ぶことによる賃金への効果と、個人の意欲や能力の賃金への効果を混同してしまい、4年間学ぶことが賃金に与える純粋な効果を知ることができません。計量経済学ではこのような問題に対処する方法を学びます。

経済ゼミナールⅠ・Ⅱでは統計学と計量経済学について学び、Ⅲで卒業論文を作成します。

指導方針

テキストの輪読を行う予定ですが、内容は受講者の理解度に応じて判断します。また、講義のない期間などに課題を出します。経済ゼミナールⅢでは、計量経済学をデータに適用して卒論を書くことになります。また、経済学と統計学の性質上数学は必要になります。

指導教員プロフィール

専門分野 計量経済学
主要業績 Hayato Nakanishi, “How the change of risk announcement on catastrophic disaster affects property prices?”, in Springer series: Studies in Economic Theory (The economics of global environment – Catastrophic risks in theory and policy) edited by Armon Rezai and Graciela Chichilnisky, Springer, Chapter 25, 2016.
Hayato Nakanishi. “Quasi-experimental evidence for the importance of accounting for fear when evaluating catastrophic events”, Empirical Economics, 52(2), pp869-894 2017.
Tadao Hoshino, Hayato Nakanishi. “Economic valuation of environmental quality using property auction data: A structural estimation approach”, Land Economics. 92(4), pp 703-717. 2016.
担当講義名 計量経済学, 経済入門, 基礎統計学, 経済数学Ⅰ

教員より新ゼミ生へ

数式を使うことを怖がらないでください

統計に限らず、できるだけ数式を使わずに「わかる」ことを強調した書籍があふれています。これらの書籍を読むことは導入には役立ちますが、応用は困難です。著者が易しい言葉で難しい理論を説明できるのは、彼らが基礎理論を深く理解しているからです。もしあなたが、数式を使わずに説明をする著者のように、統計や経済を説明したければ、あなたもある程度は基礎理論を理解するほかありません。そのためには多くの場合数式を使った演習が必要です。しかし、計算演習やその先にある経済や統計の理解は決して無駄になりません。数学は勿論ですが、その応用である経済学や統計学もまた知識を積み上げていくことで分かる内容がどんどん広がっていく学問です。最初は一つのイコールの意味が分かるのに5分かかっても、少しずつ短い時間で理解できるようになっていき、理解できる内容が勉強によって必ず広がります。(たとえば、皆さんが2次方程式を解けるのは等号の意味と因数分解と平方根を理解しているからです。)同様に、すぐに学ぶことをやめてしまった人と、学び続けた人では経済や統計を通して見える世界が全く異なります。高々90分の入学試験のための勉強では、解くのに時間のかかる数学の問題を真面目に考えることは愚かな選択だったかもしれませんが、これからの例えば10年間を賢い自分として生きるためには、たとえ数式が出てきたとしても、ある程度教科書と向き合って勉強して損はしないと思います。

あなたが発見したことの価値はプレゼンテーションによって変化します

しかし、数式だけでは限られた人たちに対してしか、あなたの主張を伝えることは出来ません。もちろん、あなたの発見を共有することもできません。その場合、あなたの発見は相手にとって無価値になってしまいます。もしあなたが、友人や取引相手とあなたの考えや発見を共有したければ、相手の専門や興味に応じた言語や表現を用いて表現することが必要です。たとえば、教科書に数式がたくさんあれば、その本は数式を使って学ぶ意思のある人向けに書かれています。教科書に数式が無ければ、数式を好まない人を読者として想定しています。小学生向けの本であれば、簡単な漢字と文章で構成されますし、経済学部の大学生向けであれば、経済学の専門用語を用いて少し複雑な文章で構成されるかもしれません。ですから、皆さんには数式を使った演習に加えて、報告相手に応じた報告方法を自ら考え身に着けてもらいたいと考えています。これもまた時間のかかる作業ですが、皆さんの就職活動やその後を左右する重要な能力です。折角、学ぶための時間が許されているのですから、是非挑戦してほしいと思います。

「分かるために考えること」と「分からないことを質問すること」の両方が重要です

残念ながら、皆さんは今後経済学や統計学として学んだことのない問題に直面することばかりでしょう。これは経済学部に限りませんが、大学卒業後に試験以外で答えが分かっている問題に直面することは稀です。更に言えば、問題が問題として定式化されていることすら稀です。しかし、何らかの形であなたは問題の解決を迫られることになるでしょう。そのとき頼りになるのは自分や協力者の思考と世の中に蓄積されている知識に他なりません。思考による問題解決能力は思考者の経験によります。これまでに知っていること、考えた末に分かったことが多い思考者ほど思考の質は高まるでしょう。一方で、一人の人間が有限時間に得られる経験は有限ですから、分からないことがあるのは仕方ないことです。しかし、知識や考えを協力者と共有することで対処できる問題の幅は飛躍的に広がります。この「共有」のために必要な行為の1つが質問です。質問もまたコミュニケーションの技術ですから、訓練をしなければ効果的な質問をすることも質問を引き出すことも困難です。ですから、質問することも勉強だと思って、友人や他の受講者あるいは教員に躊躇わず質問してみてください。

選考方法

レポートと面接による選考を行います。(レポートの内容は説明会で指示します。)

ゼミナール一覧へ戻る